Curriculum for Biomedical Engineering M.Sc. # **Content** BM=Specialisation Biomedicine; ME=Specialisation Medical Engineering | 1. | Introduction to Medical Engineering, 1st Sem. ME | 2 | |-----|---|------| | | Simulation, 1st Sem. | | | 3. | Sensorics, 1st Sem. | 5 | | | Modeling 1st Sem. | | | | Management competences, 1st Sem. | | | 6. | Research practical medical engineering, 2nd Sem. ME | . 10 | | 7. | Medical Modelling, 2nd Sem. ME | | | | Signal Processing, 2nd Sem. ME | | | 9. | Advanced Medical Technologies, 2nd Sem | . 15 | | 10. | Electives | . 17 | | 11. | Thesis, 3rd Sem | . 18 | # 1. Introduction to Medical Engineering, 1st Sem. ME | nt | roduction to Med | | | 10 D | 0 | | - - | £ | ln. | 4! | |----|------------------------------------|--|-------------|--------------|------------------|------------|-----------------------|--------------------|---------------|-------------------------| | | | Vorkload
80 h | Credits | /CP | Semester | | Frequency once a year | f module | Dura
1 Sor | i tion
mester | | | Module | 0011 | _ 0 | Teaching | Language | Conta | act hours | Self-study | | s size | | | a) Medical Eng | ineering Lab | | English | Languago | | 2 SWS / 22,5 h | a) 67,5 h | a) | 20 | | | b) Fundamenta | | | | | | 2 SWS / 22,5 h | b) 67,5 h | b) | 20 | | | Engineering | | | | | ~, | _ 0 0 /,0 | | , | | | | Learning outcome | | | | | | | • | | | | | On successful com | pletion of this mo | dule you | should be | able to | | | | | | | | Application (3): | | | | | | | | | | | | | the range of app | | | | | - | - | | | | | | and main principle
ement techniques | | | | ecially | in the field of mo | deling & simula | ition, | | | | | ethods of Biomed | | - | | nnlicati | on of blood press | ure monitorina | | | | | | ethods of blomed
ethods from elect | | | | | | die monitoring | | | | | | dard software to | | | | | | | | | | | Analysis (4) / Syn | | a.i.a.y20 0 | ound orgin | aio ai ia aooigi | . ср. | o door mitoriacoo | | | | | | | trate and explain | results in | a scientific | presentation | | | | | | | | | ne parameters an | | | | | ement systems | | | | | | | ne robustness and | | | | | | | | | | | | he ideas of releva | | | | | | | | | | | | and mathematica | l problem | ns in Bion | nedical Engin | eering | and describe p | ossible solutio | ns to | those | | | Individual compo | | | | | | | | | | | | a) From physiolo | | | | | | | | | | | | | gy of blood press
f method of blood | | mageurar | nont | | | | | | | | | f amplifiers | pressure | IIIcasurci | HEHL | | | | | | | | | equisition and ana | llysis | | | | | | | | | | | nterface programr | | | | | | | | | | | | | _ | | | | | | | | | | b) Overview of d | | | | ing: | | | | | | | | | gical basis of org | • | | | | | | | | | | | e measurements | | • | | | | | | | | | | organs e.g. artific | | kidney re | olacement, ar | tificial l | limbs, cochlea im | plants, artificial | retina | | | | | g of organ system | | | | | | | | | | | | tion of therapeuti | c measure | es | | | | | | | | | Teaching method a) Lecture, Practi | | | | | | | | | | | | b) Lecture, Semir | - | | | | | | | | | | | Prerequisites | iai | | | | | | | | | | | Undergraduate pro | gramming, electr | onic circu | its, signal | analysis.: | | | | | | | | | gy of organ syste | | , - 0 |)1· | | | | | | | | - Signal a | cquisition, amplifi | er design | | alysis | | | | | | | | Basics of engineer | ing and presentat | | | | | | | | | | | | ement devices | | | | | | | | | | | _ | ring math | | | | | | | | | | | | presentation | | | | | | | | | | | Methods of asses | | ootical ta | de / | =00/) | | | | | | | | a) 2 oral ex
b) 1 exam | caminations on pr | actical tas | sks (each : | DU%) | | | | | | | | Applicability of m | ndule | | | | | | | | | | | Mandatory module | | n other st | udv proar | ams if places | are ava | ailable | | | | | | Person responsib | | | .a. progre | ano ii pidoos | a. 5 av | | | | | | | Prof. Vondenbusch | | | | | | | | | | | | Reading list (Core | | mmende | ed texts) | | | | | | | | | - Kramme | ,R. ed (2011): M | edizintecl | hnik. Sprin | | | | | | | | | - Bronzino | , J. D. ed. (2014) | The Bior | nedical Er | ingeering Ha | ndbool | | | | | | | - Carr/Bro | wn,. (2000): "Intro | duction to | o Biomedio | cal Equipmen | t Techr | nology", Prentice | Hall, 2000 | | | # 2. Simulation, 1st Sem. | | | Workload | Credits/C | | ster | | y of module | Duration | | | | | |---|--|---|--|---|------------|---|---------------------------------------|--------------------------|--|--|--|--| | | Module | 180 h | 6 | Tooching 1 | | ontact hours | a year | 1 Semester
Class size | | | | | | | a) Simulati | onstechnik (Simula
er Mathematics | ation) | Teaching
Language
English | a) | 2 SWS / 22,5 h
2 SWS / 22,5 h | Self-study a) 67,5 h b) 67,5 h | a) 30
b) 30 | | | | | | | Learning outco On successful co Application (3): - describe a - solve initia - apply the l - apply metl - implement Analysis (4) / Sy - calculate s | mes completion of this mand generalize mather all value problems in Method of Lines to mods of parameter advantage. | hematical mod
numerically
translate a pa
identification t
in SIMULINK
analyze their s | uld be able to lels for processes rtial differential e o identify parame and design close | quation to | o a system of ordin
atic and dynamic s | ary differential ec | quations | | | | | | | outline the understand | ideas of relevant of mathematical pro | scientific publications by publications and so | cations, reproduc
lve these by impl | ementing | appropriate algori | thms in MATLAB | | | | | | | } | compile gr Individual comp | aphical user interfa | aces and imple | ement methods to | prevent | user based softwa | are errors. | | | | | | | | a)Ordinary difference
-
-
-
-
- | ential equations:
Steady states,
Numerical solu
Reaction kinetic
fitting ODE para | tion with MATI
cs: enzyme re
ameters | bility AB ODE solvers eactions, pseudo | steady st | | | | | | | | | | b)MATLAB/SIMULINK programming skills: - vector based calculus - import, expert and graphic representation of data and simulation results | | | | | | | | | | | | | | import, export and graphic representation of data and simulation results functions and scripts for automated execution of algorithms parameter identification using MATLAB functions | | | | | | | | | | | | | | compiling graphical user interfaces using MATLAB GUIDE toolboxes and blocksets in SIMULINK implementing dynamic systems in SIMULINK | | | | | | | | | | | | | | - | SIMULINK base | | | | | | | | | | | | ļ | Teaching methors a) Lecture, MATI b) Lecture, MATI | LAB exercises | | | | | | | | | | | | j | | Mathematics:
stems of linear equartial) derivatives, e | | | ıs | | | | | | | | | _ | Boolean algorit Basic algorit | ased programming:
ebra
hms (loops, condit
ions/methods, loca | ions) | ariables | | | | | | | | | | | b) Compu | tion: 1 written exarutermathematik: 1 | | | (50%) | | | | | | | | | ' | Applicability of
Mandatory modu | module
ıle in BME/elective | in other study | , | | | | | | | | | | 3 | Person respons | sible for medule/ l | locturor | | | | | | | | | | # 9 Reading list (Core texts and recommended texts) - a) Murray, J. D. (2002): Mathematical Biology. Springer-Verlag, 2002. Teufel, P. E. (2004): Eine Dosierungshilfe für Insulin bei Typ 1 Diabetis. Dissertation, Universität Ulm, 2004. Bergman, R. N. (2003): The Minimal Model of Glucose Regulation: A Biography. In: Novotny, J. A., Green, M. H., Boston, R. C. (eds.) Mathematical Modeling in Nutrition and the Health Sciences. Advances in Experimental Medicine and Biology, Volume 537, Kluwer Academic/Plenum Publishers, New York - b) Beucher, O. (2008): "MATLAB und Simulink: Grundlegende Einführung für Studenten und Ingenieure in der Praxis", Volume 4, Pearson Studium MATLAB GUIDE toolbox tutorial: - http://www.mathworks.com/access/helpdesk/help/techdoc/creating_quis/bqz6p81.html # 3. Sensorics, 1st Sem. | Sei | nsorics | | | | | | | | | | | | |-----|---------|-----------|-----------|----|----------|----------|----|----------------|--------|-------|-----|----------| | | | | Workload | Cr | edits/CP | Semeste | • | Frequency o | f modu | le | | Duration | | | | | 180 h | | 6 | 1 | | Once a | year | | 1 | Semester | | 1 | Module | | | | Teaching | Language | (| Contact hours | Self-s | tudy | Cla | ss size | | | a) | Programn | ming | | Engl | ish | a) | 20 h | a) 7 | '0 h | a) | 30 | | | b) | Sensor To | echnology | | J | | b) | 2 SWS / 22,5 h | b) 6 | 7,5 h | b) | 30 | 2 #### Learning outcomes On successful completion of this module you should be able to a) # Application (3): - Apply bitwise operators to access individual pins - employ interrupt service routines in order to react to events - diagnose programming errors by using the debugger - apply print/scan customization to direct input/output to specific hardware # Analysis (4): - Appraise algorithms by simulating external signals b) ## Application (3): - calculate the transfer funtions of various sensor interfaces - develop methods of signal processing of biomedical signals - design biomedical measurement systems #### Analysis (4): - analyse the transfer functions of sensor interfaces - examine biomedical measurement systems ## 3 Individual component content #### a) C Basics: - Local/global variables - Projects consisting of several source files - Preprocessor directives - Console output/keyboard input - Pointers - Bitwise operators - Digital I/O, Interrupts - Analog-to-Digital Conversion - RS232 communication, I2C bus, customizing printf/scanf, LCD output #### b) Biomedical sensors - General biomedical signal processing - Origin and characteristics of biomedical signals - Biopotential amplifiers - Analog signal processing - Digital signal processing - General requirements for safety - Electrocardiogram - Electroencephalogram - Electromyogram - Invasive and noninvasive blood pressure measurement - Infrared temperature measurement - Ultrasound measurement systems - Magnetic resonance imaging ## **Teaching methods** - 4 a) Blended learning: Online material, tutorials, presence date - b) Lecture, student's projects | 5 | Prerequisites a) Basics of text based programming | |---|--| | | b) Basics of electrical engineering and electronics, basics in anatomy and electrophysiology Methods of assessment | | 6 | a) Microcontroller programming: elaboration assignmentsb) 1 written examination (70%), 1 presentation (30%) | | 7 | Applicability of module Mandatory module in BME/elective in other study programs | | 8 | Person responsible for module/ lecturer Prof. Dr. Bernhard Vondenbusch / Prof. Dr. Edgar Jäger | | 9 | Literature (Core texts and recommended texts) a) - Mike Banahan, Declan Brady, Mark Doran: The C Book. Addison Wesley, 1991. http://publications.gbdirect.co.uk/c_book/ b) - John D. Enderle, Susan M. Blanchard, Joseph D. Bronzino: Introduction to biomedical engineering. Elsevier Academic Press, 2005 Eugene N. Bruce: Biomedical signal processing and signal modeling. Wiley, 2009. | # 4. Modeling 1st Sem. | Мо | delling and sys | stems theory | | | | | | | | |----|-----------------|--------------|----------|-----|---------|------|----------------|------------|------------| | | | Workload | Credits/ | LP | Semeste | er | Frequency | of course | Duration | | | | 180 h | 6 | | 6 | | once | a year | 1 Semester | | 1 | Module | | | Lar | nguage | Co | ontact hours | Self study | Class size | | | a) Modeling | | | | English | a) 2 | 2 SWS / 22,5 h | a) 37,5 h | a) 30 | | | b) Sytems Theor | y | | | • | b) 2 | 2 SWS / 22,5 h | b) 37,5 h | b) 30 | ## 2 Learning outcome # Knowledge (1): upon successful completion of the module you should be able to (,) - know the terminology and basic principles of control theory #### Understanding (2): upon successful completion of the module you should be able to(,) - understand modeling (for) in the context of controlled systems and processes - understand the difference between open and closed loop control and (are) be able to illustrate the mathematical principles of controlled systems in Laplace and time scale. - design a speed and position controlled system #### Application (3): upon successful completion of the module you should be able to(,), - Mathematically describe power systems with elastically coupled mechanical structures - determine the stability of open and closed loop systems - establish mathematical models (ordinary differential equations) of different controlled systems #### Analysis (4): upon successful completion of the module you should be able to(,) - analyze the statistical and dynamical behavior of controlled systems in both time and frequency domain and determine their characteristics and physical parameters - determine the resulting behavior of controlled systems for different inputs in the time domain and transform them into the frequency domain - construct a p-controler as well as a cascading p- and pi-controller - evaluate the quality of a controlled systems and its dynamical behavior - graph a Bode-diagram of the frequency domain of controlled systems - analyze the systems behavior using the Nyquist theorem and determine the amplification factor of a controlled system # 3 Content #### a) and b) - Modeling of power systems and mechanical transmission elements - Laplace-transformation - Input and output signals in time and frequency domain - Behavior of controlled systems in the time domain establishment of characteristics and physical parameters - Pole zero plot - Transfer elements and their transfer functions - Block diagram - Frequency response, Bode diagram, Nyquist plot - Stability prameters, Hurwitz criterion, central limiting value theorem - Linear controlled systems, Nyquist method - P-/PI control ## 4 Teaching methods - a) lecture - b) b) lecture # 5 Prerequisites a) and b): basics of measument and control theory, technical mechanics 1 and 2, dynamics, mathematics for engineers, physics #### 6 Methods of assessment One written exam # 7 Applicability of module Mandatory module in BME/elective in other study programs # 8 Person responsible for module/ lecturer Prof. Dr. Ketterer | 9 | Literature a) & b) | | |---|--------------------|--| | | H. Lutz, | Taschenbuch der Regelungstechnik Verlag Harri Deutsch, | | | W. Wendt | 7. Auflage 2007, ISBN 978-3817118076 | | | O. Föllinger | Regelungstechnik, Hüthig Verlag, | | | | 5. verbesserte Auflage 1985, ISBN 3-7785-1137-8 | | | R. Isermann | Identifikation dynamischer Systeme. Springer Verlag; Band I und Band II; 1988. | | | R. Isermann | Regelungstechnik Band 1 - 3. | | | | Braunschweig, Wiesbaden: Friedrich Vieweg & Sohn, 1988. | | | H. Unbehauen | Regelungstechnik Band 1 - 3. | | | | Braunschweig, Wiesbaden: Friedrich Vieweg & Sohn, 1988. | | | S. Zacher | Übungsbuch Regelungstechnik, Vieweg + Teubner Verlag, 2010 | # 5. Management competences, 1st Sem. | Modi | ıle Code | | Workload
180 h | Credits
6 | Se | emester
1 | | ency of course
nce a year | Duration
1 semester | | | | |------|--|-----------|---|------------------|---------------|-----------------|---------------|------------------------------|------------------------|--|--|--| | | Module | | | | Language | Contact ho | | Self-study | Class size | | | | | | a) | Project | management | | English | a) 2 SWS | | a) 67,5h | a) 24 | | | | | | b) | | machine interface | | | b) 2 SWS | | b) 67,5h | b) 24 | | | | | | c) | | ge or any other cour | se with | | c) 2 SWS | | c) 67,5h | c) 24 | | | | | | , | manage | ement content | | | 1, | ()- / | -, -,- | 0) 24 | | | | | | Learning | | ne
mpletion of this modu | ıla yayı ehayılı | d ha abla ta | | | | | | | | | | | | (2) / Application (3) | | u be able to | | | | | | | | | | a) | | stand the criteria that | | signt (SMADT |) and the diff | oronooc h | otwoon project or | nd process | | | | | | a) | | be and understand th | | | | | etween project at | iu process | b) | | be and understand the and and apply the ba | | | | | on of a scientific/a | vnorimental nanor | | | | | | b) | | anagement competer | | | | generalio | in or a scientific/e | xperimental paper | | | | | | c) | | | ices dependi | ng on conten | t of course | | | | | | | | | T . | | nthesis (5): | | d for a | المامية | of project | o the encesists to | rial, manararara | | | | | | a) | | mine tools and param | | | | | | risk management | | | | | | | | nize and correct disc | | tween plann | ed and actual | project p | rogress | | | | | | | 1-1 | | Il project documentat | | | | 1.0 | | | | | | | | b) | | Illy analyse ideas in t | | man machine | e Interaction i | n relation | to the state of the | e art and edit the | | | | | | , | • | sentation in a scientif | | | | | | | | | | | | c) | | ds on content of the c | course | | | | | | | | | | | Content | | | | | | | | | | | | | | a) | | ea to successful com | | | | | | | | | | | | Project ideas and start –up, time scale and project structure, risk management and decision techniques, conte | | | | | | | | | | | | | | grant applications, and contracts, documentation, tools of project management (e.g. SWOT analysis, magic triangle, etc.) | b) | | nental from data to so | | | | | | | | | | | | | | c writings the core of | ojective, exer | cises are dor | ne with the im | portant fie | eld of human mad | chine interfaces | | | | | | c) | | s on course chosen | | | | | | | | | | | | Teaching | g metho | ds | | | | | | | | | | | | a) | lecture | , | | | | | | | | | | | | b) | lecture | , seminar | | | | | | | | | | | | c) | | ds on course chosen | | | | | | | | | | | | Prerequi | | | | | | | | | | | | | | Basic kno | owledge | of literature search | | | | | | | | | | | | | | scientific publication | s | | | | | | | | | | | Methods | | | | | | | | | | | | | | a) | written | | | | | | | | | | | | | b) | | paper (50%) and oral | presentation | (50%) | | | | | | | | | | c) | | s on course chosen | p. 000 | . (5575) | | | | | | | | | | Applicat | | | | | | | | | | | | | | | • | e in BME/ elective in | other study r | orograms | | | | | | | | | | | | ible for module /lec | | og. amo | | | | | | | | | | | • | ondenbusch | | | | | | | | | | | | Literatur | | | | | | | | | | | | | | b) | | | | | | | | | | | | | | | nas A. La | ang (2009). How to V | /rite, Publish. | and Present | in the Health | Sciences | s: A Guide for Ph | ysicians and | | | | | | | | | | | | | | , | | | | | | Labora | | searchers, American | College of Pr | nvsicians. | | | | | | | | | | | | searchers. American
(atz (2009). From Re | | | Suide to Scier | ntific Writin | na. Sprinaer Verl | ag. | | | | # 6. Research practical medical engineering, 2nd Sem. ME | Mod | dule code | Workload
180 h | Credits/CP
6 | Semester
2 | Frequency of module
Once a year | Duration
1 Semester | |-----|--|-------------------|---|---------------------------------|------------------------------------|--| | 1 | Module
Forschungsprak | • | Teaching Language
English | Contact hours
2 SWS / 22,5 h | Self-study
157,5 h | Class size
20 in groups of 1 or 2
students | | 2 | Learning outco
On successful c
Analysis (4): | ompletion of th | is module you should be | | of Biomedical Engineering | | | | Synthesis (5) | | | | ummarize the relevant sta | te of the art | | | | | thods of Biomedical Eng
tatistical analysis on exp | | c application | | | | Evaluation (6): | - describe | | report comparable to | o reports published on inte | rnational conferences | | 3 | Individual com | | ze and explain results in | a scientific presenta | ation | | | | | | entific publication: | | | | | | · | | ect, especially formulatio | n of a clear objective | е | | | | | narize the state | | | | | | | | | ition of appropriate meth | | | | | | | • | to obtain significant res | | .1.6 | | | | | | al review of the relevand | e of your obtained s | Solution | | | | | lation of a prop | f your research highlight | ing the main findings | 2 | | | 1 | Teaching meth | | your research migningm | ing the main indings | 5 | | | • | lecture, practica | | entations | | | | | 5 | Prerequisites | 3,1 | | | | | | | | | electronic circuits, signal | analysis | | | | | | | of medical concepts | | | | | | | l acquisition, si | | | .:0 | | | 6 | - optim | | design Scientific writing | and presentation sk | (IIIS: | | | J | | rch (50%) | | | | | | | | n report (30%) | | | | | | | | ntation (20%) | | | | | | 7 | Applicability of | | | | | | | | | | ctive in other study progr | ams | | | | 8 | Person respon
Prof. Dr. Knut M | | ile/ lecturer | | | | | 9 | Literature | OIIGI | | | | | | - | | na list (Core te | xts and recommended to | exts) | | | | | | • , | 1): Medizintechnik. Sprii | • | | | | | - Bronz | ino, J. D. ed. (2 | | ningeering Handboo | ok, 4th edition, CRC Press | , 2014. Special scienti | # 7. Medical Modelling, 2nd Sem. ME | Module code Workload (| | Credits/CP | Credits/CP Semes | | requency of module | Duration | |------------------------|------------------------|------------|-------------------|--------------|--------------------|------------| | | 180 h | 6 | 2 | Or | nce a year | 1 Semester | | 1 Module | Module | | Teaching Language | | Self-study | Class size | | a) | Physiological Modeling | english | | a) 2 SWS / 2 | 22,5 h a) 67,5 | h a) 20 | | b) | System Identification | | | b) 2 SWS / 2 | 22.5 h b) 67,5 | h b) 20 | On successful completion of this module you should be able to ## Comprehension (2) / Application (3): - understand the concept of system identification - describe different approaches to prove identifability - understand the importance of identifiability in model based therapy in Medicine #### Analysis (4) / Synthesis (5): - compare different modeling approaches - analyze properties of model formulations e.g. computational complexity, stability, identifiability - develop own models and derive formal mathematical representations - understand mathematical problems and solve these by implementing appropriate algorithms in MATLAB - combine approaches on different levels to "multi-level" models - derive simple approaches for model-based optimization in medical applications #### Evaluation (6): - demonstrate and explain results in a scientific presentation - determine model parameters in dynamical systems - analyze robustness of system, identify sensitivity on parameter settings. #### Individual component content - a) From physiology to mathematical representations: - Physiology of gas exchange, pulmonary mechanics, cardio-vascular systems - Modeling basics, system equations, transforms - Mathematical representations - Sensitivity analysis - hierarchically structured models - b) From mathematical representations to the rapeutic decisions: - Signal acquisition and evaluation - System identification, structural, practical identifiability - identification in hierarchies of models ## Teaching methods - Lecture, practical training - Lecture, practical training ## Prerequisites Undergraduate programming, electronic circuits, signal analysis, : - Physiology of organ systems - Signal acquisition, amplifier design, signal analysis Basics of engineering and presentation skills: - measurement devices - engineering math - scientific presentation #### Methods of assessment - physiological modeling: 1 written paper (60%), 1 oral presentation (40%) - system identificiation: homework assignments, final exam (100%) # Applicability of module Mandatory module in BME/elective in other study programs ## Person responsible for module/ lecturer Prof. Dr. Knut Möller - Literature (Core texts and recommended texts) a) Khoo, . (2011): -Verlag, 2011. Bronzino, J. D. ed. (2014): The Biomedical Eningeering Handbook, 4th edition, CRC Press, 2014. b) Lennart/Ljung. (2000): "Introduction to System Identification", Prentice Hall, 2000 Schranz, Chr (2013) # 8. Signal Processing, 2nd Sem. ME | | | | Workload
180 h | Cred | dits/CP
6 | Semest
1 | er | Frequency
Once | | Duration
1 Semester | |--|-----------------------|---|---|--|---|-----------------------------------|----------|-------------------|-----------|------------------------| | a) Image processing, Computer Graphics b) Biosignalanalysis Learning outcomes On successful completion of this module you should be able to a) Application (3): - apply different methods of image processing - apply different tools of image processing Analysis (4): - realize application possibilities of image processing - assess results of image processing - optimize methods of image processing - apply various window functions during discrete Fourier transform - calculate parameters of digital filters - apply different methods for coding / decoding of biosignals - design a system for pattern recognition Analysis (4): - analyze the transfer functions of discrete systems in time and frequency domain - assess results of a discrete Fourier transform and optimize the result - optimize digital filters - optimize systems for problem dependant pattern recognition Individual component content a) Digitalization, histogram, Fourier-Transform, filtering, texture, classification, 3D-imaging, segmentation method colour quantification, data compression methods, JPEG, Wavelet-Transform, Radon-Transform Discrete signals and systems - Z-Transform, Discrete Fourier Transform Design of digital filters (FIR/IIR) - Coding and decoding of signals - Methods of pattern recognition Teaching methods a) seminar D) Lecture, student's projects Prerequisites a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | Mod | dule | | 1 | | ng Language | С | | | Class size | | Learning outcomes On successful completion of this module you should be able to a) Application (3): - apply different methods of image processing - apply different tools of image processing Analysis (4): - realize application possibilities of image processing Analysis (4): - realize application possibilities of image processing - assess results of image processing - optimize methods of image processing - optimize methods of image processing - apply unious window functions during discrete Fourier transform - calculate parameters of digital filters - apply different methods for coding / decoding of biosignals - design systems for pattern recognition Analysis (4): - analyze the transfer functions of discrete systems in time and frequency domain - assess results of a discrete Fourier transform and optimize the result - optimize digital filters - optimize objital opti | |) Imag | | puter | | | | | a) 67,5 h | a) 30 | | Learning outcomes On successful completion of this module you should be able to a) Application (3): | þ, | | | | | | b) | 2 SWS / 22,5 h | b) 67,5 h | b) 30 | | On successful completion of this module you should be able to a) Application (3): - apply different methods of image processing apply different tools of image processing Analysis (4): - realize application possibilities of image processing - assess results of image processing - optimize methods of image processing - optimize methods of image processing - optimize methods of image processing - apply various window functions during discrete Fourier transform - calculate parameters of digital filters - apply different methods for coding / decoding of biosignals - design systems for pattern recognition Analysis (4): - analyze the transfer functions of discrete systems in time and frequency domain - assess results of a discrete Fourier transform and optimize the result - optimize systems for problem dependant pattern recognition Individual component content a) Digitalization, histogram, Fourier-Transform, filtering, texture, classification, 3D-imaging, segmentation method colour quantification, data compression methods, JPEG, Wavelet-Transform, Radon-Transform b) Digital Signal Processors - Sampling and analog-digital/digital-analog conversion Discrete signals and systems - Z-Transform, Discrete Fourier Transform - Design of digital filters (FIVIIR) - Coding and decoding of signals - Methods of pattern recognition Teaching methods a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | | | | | | | l | | | | | - analyze the transfer functions of discrete systems in time and frequency domain - assess results of a discrete Fourier transform and optimize the result - optimize digital filters - optimize systems for problem dependant pattern recognition Individual component content a) Digitalization, histogram, Fourier-Transform, filtering, texture, classification, 3D-imaging, segmentation method colour quantification, data compression methods, JPEG, Wavelet-Transform, Radon-Transform b) Digital Signal Processors - Sampling and analog-digital/digital-analog conversion - Discrete signals and systems - Z-Transform, Discrete Fourier Transform - Design of digital filters (FIR/IIR) - Coding and decoding of signals - Methods of pattern recognition Teaching methods a) seminar b) Lecture, student's projects Prerequisites a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | On sa) App Ana b) App | successful of apply d - apply d - apply d - realize - assess - optimiz - design - apply v - calculat - apply d - design | completion of this managers; ifferent methods of ifferent tools of image presults of image premethods of image: a system for digital arious window functe parameters of digital ferent methods for | image processing e process signal processions during gital filter r coding / | rocessing ssing nage processing rocessing discretes | essing
e Fourier trans | form | | | | | Individual component content a) Digitalization, histogram, Fourier-Transform, filtering, texture, classification, 3D-imaging, segmentation method: colour quantification, data compression methods, JPEG, Wavelet-Transform, Radon-Transform b) Digital Signal Processors - Sampling and analog-digital/digital-analog conversion - Discrete signals and systems - Z-Transform, Discrete Fourier Transform - Design of digital filters (FIR/IIR) - Coding and decoding of signals - Methods of pattern recognition Teaching methods a) seminar b) Lecture, student's projects Prerequisites a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | | analyzeassessoptimiz | results of a discrete
e digital filters | e Fourier | transform | and optimize t | he resu | | | | | Teaching methods a) seminar b) Lecture, student's projects Prerequisites a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | Indi | vidual com a) Digita coloui b) Digita - Samp - Discre - Z-Tra - Desig - Codin | ponent content lization, histogram, r quantification, dat I Signal Processors ling and analog-digete signals and systemsform, Discrete Forn of digital filters (Fig and decoding of signals and decoding of signals in the signals and decoding of | Fourier- a compres gital/digitatems ourier Tra IR/IIR) signals | Transform,
ession metl | filtering, textu
hods, JPEG, W | re, clas | | | on methods, | | a) seminar b) Lecture, student's projects Prerequisites a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | Tea | | | | | | | | | | | Prerequisites a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | a) s | eminar | | | | | | | | | | a) Basic Mathematics b) Basics of electrical engineering and electronics Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | , | | | | | | | | | | | Methods of assessment a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | a) B | asic Mather | | d alactroni | ice | | | | | | | a) Presentation & summary paper b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | | | | u electroni | 100 | | | | | | | b) 1 written examination (70%), 1 presentation (30%) Applicability of module Mandatory module in BME/elective in other study programs | | | | | | | | | | | | Applicability of module Mandatory module in BME/elective in other study programs | | | | recentet | ion (30%) | | | | | | | Mandatory module in BME/elective in other study programs | | | | neseniai | 1011 (30%) | | | | | | | | | | | in other | otudy pro- | rome | | | | | | rerson responsible for module/ lecturer | | | | | | jiailis | | | | | | | | | | iecturer | | | | | | | | Module: Prof. Dr. U. Busolt Lecturer: Prof. Dr. U. Busolt / Prof. Dr. Bernhard Vondenbusch | | | | D- D | - la - a - l 3 / : | da a basa a t | | | | | # Literature (Core texts and recommended texts) - Gonzalez, R.C., Woods, R.E.: *Digital Image Processing*. Sec. Ed., Prentice Hall 2003 Abmayr: Einführung in die digitale Bildverarbeitung 2.Aufl., Stuttgart: Teubner 2002 - Tietze, U., Schenk, Ch.: Halbleiter-Schaltungstechnik, Springer, 2012. - Werner, M.: Digitale Signalverarbeitung mit MATLAB, Vieweg, 2012. Kammeyer, K-D., Kroschel, K.:Digitale Siganlverarbeitung, Teubner, 2012. Theodoridis, S.: Pattern Recognition, Elesevier, 2008. # 9. Advanced Medical Technologies, 2nd Sem. | | | Workload
180 h | Credits/CP
6 | Sem | ester
1 | | ency of module
nce a year | Duration
1 Semester | | | | |---|--|--|---|--|---|---|--------------------------------|-------------------------------|--|--|--| | | [′] Techno | | Teaching La
English | inguage | a) 2 S' | tact hours
WS / 22,5 h
WS / 22,5 h | Self-study a) 67,5 h b) 67,5 h | Class size a) 30 b) 30 | | | | |) | b) Artificia Learning ou | l Organs | | | | | | | | | | | | Application - under - decid - provid - discus Analysis (4 - under - identi - analy Synthesis (| stand how to use Artife upon parameters like de ideas for further dess features of minimal b: stand basics in mass fy shortcomings of curse the requirements for | . Org. in an optice external blood velopment of Arly invasive diagrams transfer of most rently available or instruments a | imal manr
I flow, pre
tif. Org.
nostic and
timportan
surgical in
nd equipn | er (machii
ssures, etc
I surgical to
t compone
nstrumenta
nent neede | echniques with
ents
ation
ed to implemen | surgeons | | | | | | } | a) Minimally - Bi - To s - Ai - R | component content Invasive Med.: asic techniques of minechnical requirements systems dvanced optical metholecent developments: N | : instruments, e | ndoscopy | , electrosu | | | ems, diagnostic | | | | | | b) Artificial Organs: - Principles of membrane Processes - Manufacturing of Membranes / Modules - Mass transfer models in Art. Kidney, Art. Liver, Art. Lung - Basics about individual processes (machines,) | | | | | | | | | | | | | | nethods
ecture, Presentations, lecture, Exercises, Excu | | | | | | | | | | | 5 | Prerequisite | | ne / Technologion
enclature and hugical techniques
cs, electricity ar
entrations,
nvection, Phase | es
uman anat
s and instr
nd mechal
e Equlibria | omy
umentation
nics | ı | •• | | | | | | 6 | | assessment | on (50%) | | | , | | | | | | | 7 | Applicabilit
Mandatory r | y of module
nodule in BME/elective | e in other study | programs | 1 | | | | | | | | } | Module: Pro | bonsible for module/
f. Bernhard Vondenbu
Hildwein / Herr Bähr | | | | | | | | | | # Literature - Nathaniel J. Soper, Carol E.H. Scott-Connor (Eds.); Springer (2012): The SAGES Manual: Volume 1 Basic Laparoscopy and Endoscopy; ISBN 978-1-4614-2343-0 - Eloot, S. (2004): "Experimental and Numeric Modeling of Dialysis", PhD dissertation, Ghent University 2004, ISBN 9090186980 - Raff, M. et. al.(2002): "Advanced modeling of highflux hemodialysis", J. Membr., Sc. 5531 (2002),1-11 Krause, B. et. al (2003): "Polymeric Membranes for Medical Applications", Chemie-Ing. Techn. (2003), 75 # 10. Electives | Electives | | | | | | | | | | | | | |-----------|---|----------------------------------|-------------------|---------------------------|-----------------------------|----------------|--|--|--|--|--|--| | | | Workload | Credits | Semester | Frequency of module | Duration | | | | | | | | | | 150 h | 6 | 2nd. semester | Each semester | 1 semester | | | | | | | | 1 | Module | | Language | Contact hours | Self study | Class Size | | | | | | | | | Technical | courses comprising at | German or English | Dependent upon course | Dependent upon course | Dependent upon | | | | | | | | | least 6 credits | | | chosen | chosen | course chosen | | | | | | | | 2 | Learning outcome | | | | | | | | | | | | | | | | | nowledge /consolidate exi | sting knowledge in the fiel | d of medical | | | | | | | | | technology, biomedicine and scientific competences. | | | | | | | | | | | | | | The detailed learning outcome depends upon the course chosen and can be found in the respective module description. | | | | | | | | | | | | | 3 | Content | | | | | | | | | | | | | | Dependent upon the course chosen. | | | | | | | | | | | | | 4 | Teaching methods | | | | | | | | | | | | | | Dependent upon the course chosen. | | | | | | | | | | | | | 5 | Prerequisite | | | | | | | | | | | | | | | ependent upon the course chosen. | | | | | | | | | | | | 6 | Assessment methods | | | | | | | | | | | | | | | t upon the course chosen | | | | | | | | | | | | 7 | At least 3 credits must be completed with a graded assessment (Prüfungsleistung/PL). | | | | | | | | | | | | | 1 | Applicability of module | | | | | | | | | | | | | 0 | Mandatory module in BME/elective in other study programs. | | | | | | | | | | | | | 8 | Person responsible for module/ lecturer Module: Prof. Bernhard Vondenbusch | 9 | lecturer: dependent upon the course chosen | | | | | | | | | | | | | 9 | Literature | | | | | | | | | | | | | <u></u> | dependent upon the course chosen | | | | | | | | | | | | # 11. Thesis, 3rd Sem. Literature Dependent on the topic chosen | | | Workload | Credits | | Semester | F | | ency of course | Duration | | | |---|--|---|-------------------------------|----|-----------------------------|---------|-----------------------------|------------------------|-----------|--|--| | | Module | 750 h | 30 (27/3 | | 3
to at hours | Calf at | | ch semester Class size | 1 semeste | | | | I | a) Thesis | | Language
German or English | | intact hours Self study 723 | | a) 24 in group sizes of one | | | | | | | , | | German or English | | 2SWS (22,5h) | | | b) 24 S | | | | | | b) Thesis Semin | | | D) | 23773 (22,311) | | | 0) 24 5 | | | | | | Learning outcome The thesis project can be done as a research project at the HFU or in a company. Students can also choose a thesis pro abroad to gain additional social and language competence. | | | | | | | | | | | | | On successful completion of this module you should be able to Application (3): | | | | | | | | | | | | | | - organize and plan a scientific project independently | | | | | | | | | | | | - chose the appropriate methods for a scientific project on the basis of the current scientific knowledge | | | | | | | | | | | | | - implem | - implement a thesis report summarizing a research project | | | | | | | | | | | | - analyze and presents defined topics of higher complexity based on current scientific knowledge and | | | | | | | | | | | | | methods | | | | | | | | | | | | | Analysis (4): | | | | | | | | | | | | | - critically analyse and evaluate a scientific project and include the results of this analysis in the future | | | | | | | | | | | | | development of the project | | | | | | | | | | | | | - critically discuss a scientific project on the basis of current knowledge | | | | | | | | | | | | | - select the key results of a project die(?) and analyze and present them in the context of current | | | | | | | | | | | | | scientific knowledge and literature. | | | | | | | | | | | | 3 | Content | | | | | | | | | | | | | a) scientific realization and summary of a chosen thesis project | | | | | | | | | | | | | b) Presentation of the thesis project | | | | | | | | | | | | 4 | Teaching methods | | | | | | | | | | | | | a) master-t | thesis | | | | | | | | | | | | b) presentation | | | | | | | | | | | | 5 | Prerequisites | | | | | | | | | | | | | Dependent on the topics chosen | | | | | | | | | | | | 6 | Methods of assessment | | | | | | | | | | | | | a) 1 thesis (100%) | | | | | | | | | | | | | Applicability of m | | | | | | | | | | | | | Mandatory module | | | | | | | | | | | | 8 | | Person responsible for module /lecturer | | | | | | | | | | | | | Dean of study course | | | | | | | | | | | | Primary supervisor: HFU professors and staff , | | | | | | | | | | | | | Secondary supervi | Secondary supervisor: HFU professors and staff , visiting lecturer, external supervisor | | | | | | | | | |