Modulkatalog des Studiengangs Angewandte Materialwissenschaften

Kürzel: AMW

Abschluss: Master of Science

SPO-Version: 10 SPO-Paragraph: 51

Fakultät: Industrial Technologies

Veröffentlichungsdatum: 29.06.2016 Letzte Änderung: 14.07.2022

Inhaltsverzeichnis

Ziele des Studiengangs Angewandte Materialwissenschaften	3
Studiengangsstruktur	
Umsetzungsmatrix	
Modulbeschreibungen	
1. Semester	7
Oberflächentechnik	8
Funktionswerkstoffe	
Werkstoffprüfung	
Angewandte Naturwissenschaften & Simulation	14
Managementkompetenzen	16
2. Semester	
Forschungspraktikum/Projektarbeit	19
3. Semester	
Thesis	

Ziele des Studiengangs

Fachliche Qualifikationsziele

Die Absolventinnen und Absolventen des Studiengangs ...

- besitzen vertiefendes Wissens im Bereich Materialwissenschaften & Werkstofftechnik
- besitzen die F\u00e4higkeit zur Anwendung der Kenntnisse aus dem Bereich Materialwissenschaften in Fertigungstechnik & Produktentwicklung
- erlangen der Fähigkeit zur ganzheitlichen Betrachtung von materialwissenschaftlichen Fragestellungen und zur Erarbeitung möglicher Lösungswege

Überfachliche Qualifikationsziele

Die Absolventinnen und Absolventen des Studiengangs ...

- sind zur lösungs- und projektorientierten Zusammenarbeit im Team befähigt
- sind zur selbständigen und wissenschaftlichen Arbeit unter Berücksichtigung der gesellschaftlichen und ethischen Folgen befähigt
- sind zur Übernahme von Führungsaufgaben in der Forschung, Entwicklung und Fertigung befähigt

Berufliche Qualifikationsziele

Die Absolventinnen und Absolventen des Studiengangs ...

- besitzen die F\u00e4higkeit zur Bearbeitung und L\u00f6sung von Forschungs- & Entwicklungsaufgaben im Bereich angewandte Materialwissenschaften
- sind f
 ür eine Promotion bef
 ähigt
- besitzen die Fähigkeit zur Übernahme von fachübergreifenden Aufgaben z.B. im Bereich Qualitätssicherung und Fertigung
- besitzen die erforderlichen Grundlagen für eine spätere Existenzgründung und Industrietätigkeit

Studiengangsstruktur

Modul/ Semester	1	2	3	4	5	6
3						
2	Erstes Schwerpunktmodul	Zweites Schwerpunktmodul	Drittes Schwerpunktmodul	Forschungspraktikum/ Projektarbeit		
1	Oberflächentechnik	Funktionswerkstoffe	Werkstoffprüfung	Angewandte Naturwissenschaften & Simulation	Wahlpflichtmodul	Managementkompetenzer

Umsetzungsmatrix

☐ Pow Qualifikationsziel	Oberflächentechnik	Funktionswerkstoffe	Werkstoffprüfung	Angewandte Naturwissenschaften & Simulation	Managementkompetenzen	Forschungspraktikum/Projektarbeit	Thesis	Summe
besitzen vertiefendes Wissens im Bereich Materialwissenschaften & Werkstofftechnik	2	2	2	2	0	1	1	10
besitzen die Fähigkeit zur Anwendung der Kenntnisse aus dem Bereich Materialwissenschaften in Fertigungstechnik & Produktentwicklung	2	2	2	1	0	2	2	11
erlangen der Fähigkeit zur ganzheitlichen Betrachtung von materialwissenschaftlichen Fragestellungen und zur Erarbeitung möglicher Lösungswege	2	2	2	1	0	2	2	11
sind zur lösungs- und projektorientierten Zusammenarbeit im Team befähigt	2	2	2	0	2	2	2	12
sind zur selbständigen und wissenschaftlichen Arbeit unter Berücksichtigung der gesellschaftlichen und ethischen Folgen befähigt	1	1	1	0	2	1	2	8
sind zur Übernahme von Führungsaufgaben in der Forschung, Entwicklung und Fertigung befähigt	1	1	1	0	2	1	1	7
besitzen die Fähigkeit zur Bearbeitung und Lösung von Forschungs- & Entwicklungsaufgaben im Bereich angewandte Materialwissenschaften	2	2	2	2	0	2	2	12
sind für eine Promotion befähigt	1	1	1	0	1	2	2	8
besitzen die Fähigkeit zur Übernahme von fachübergreifenden Aufgaben z.B. im Bereich Qualitätssicherung und Fertigung	1	1	1	1	0	2	2	8
besitzen die erforderlichen Grundlagen für eine spätere Existenzgründung und Industrietätigkeit	1	1	1	0	2	2	2	9

Qualifikationsziel	Summe
besitzen vertiefendes Wissens im Bereich Materialwissenschaften & Werkstofftechnik	10
besitzen die Fähigkeit zur Anwendung der Kenntnisse aus dem Bereich Materialwissenschaften in Fertigungstechnik & Produktentwicklung	11
erlangen der Fähigkeit zur ganzheitlichen Betrachtung von materialwissenschaftlichen Fragestellungen und zur Erarbeitung möglicher Lösungswege	11
sind zur lösungs- und projektorientierten Zusammenarbeit im Team befähigt	12
sind zur selbständigen und wissenschaftlichen Arbeit unter Berücksichtigung der gesellschaftlichen und ethischen Folgen befähigt	8
sind zur Übernahme von Führungsaufgaben in der Forschung, Entwicklung und Fertigung befähigt	7
besitzen die Fähigkeit zur Bearbeitung und Lösung von Forschungs- & Entwicklungsaufgaben im Bereich angewandte Materialwissenschaften	12
sind für eine Promotion befähigt	8
besitzen die Fähigkeit zur Übernahme von fachübergreifenden Aufgaben z.B. im Bereich Qualitätssicherung und Fertigung	8
besitzen die erforderlichen Grundlagen für eine spätere Existenzgründung und Industrietätigkeit	9

1. Semester

Ol	Oberflächentechnik													
Kennnummer		Workload 180 Std.	Cred	Credits/LP		diensemester 1	Häufigke des Angeb Nur Sommerse	ots	Dauer 1 Semester					
1	Lehrveranstaltungen			Sprac	he	Kontaktzeit	Selbststudium	Gepla	nte Gruppengröße					
	a) Oberflächentechnik & Grenzflächenreaktionen			a) Deuts		a) 22,5 Std.b) 22,5 Std.	a) 67,5 Std. b) 67,5 Std.	a) 15 b) 15						

2 Lernergebnisse/Kompetenzen

b) Funktionalisierung von Oberflächen

Nachdem Studierende das Modul besucht haben können sie...

Anwendung (3)

... Analysenprogramme planen und relevante Messungen durchführen.

Analyse (4)

... erhaltene Messergebnisse und Materialdaten in Bezug auf Qualitätsanforderungen analysieren.

Synthese (5)

- ... wesentliche Einflussgrößen darstellen und auf einen konkreten Anwendungsfall beziehen.
- ... Prüfprogramme zur Problemanalyse entwickeln.

Evaluation / Bewertung (6)

- ... unterschiedliche Beschichtungstechnologien aufgrund von gestellten Anforderungsprofilen bewerten.
- ... Messprogramme anhand von erhaltenen Ergebnissen überarbeiten.

3 Inhalte

- a) Physik und Chemie der Grenzflächen
 - Einführung in die Oberflächentechnik
 - Methoden der Funktionalisierung
 - Anwendungsbeispiele für funktionelle Beschichtungen
 - Heterogene Reaktionen (Oberflächenreaktionen)
 - Katalyse
- b) Methoden zur Oberflächenmodifikation
 - Charakterisierung von Oberflächen
 - Grenzflächenwechselwirkungskräfte
 - Bewertung von Messmethoden

4 Lehrformen

- a) Vorlesung
- b) Praktikum/Labor

5	Teilr	nahmevoraussetzungen					
	Obe	flächentechnik-Kenntnisse, wie sie in einem Ingenieur-Bachelorstudiengang vermittelt werden					
6	Prüf	ungsformen					
	a) l	Modulprüfung 1K (Klausur) (3 LP)					
	b) l	Modulprüfung 1sbL (Laborarbeit) (3 LP)					
7	Verv	vendung des Moduls					
	Ange	ewandte Materialwissenschaften M.Sc. (AMW)					
8	Mod	ulbeauftragte/r und hauptamtlich Lehrende					
	Prof. Dr. Ulrich Gloistein (Modulverantwortliche/r)						
9	Lite	atur					
	a)	Vorlesungsskript					
		Lauth, Günter Jakob; Kowalczyk, Jürgen: Einführung in die Physik und Chemie der Grenzflächen und Kolloide, 1. Aufl. 2016, Springer Spektrum 2016 (E-Book)					
		Butt, Hans-Jürgen; Graf, Karlheinz; Kappl, Michael: Physics and chemistry of interfaces, 4. ed., Wiley-VCH 2023					
		Stenzel, Volkmar; Rehfeld, Nadine: Funktionelle Beschichtungen, Vincentz Network 2013					
		Sepeur, Stefan: Nanotechnologie: Grundlagen und Anwendungen, Vincentz Network 2008					
		Jonschker, Gerhard: Praxis der Sol-Gel-Technologie, Vincentz Network 2012					
		Bobzin, Kirsten: Oberflächentechnik für den Maschinenbau, 1. Aufl., Wiley-VCH 2013					
		Zoch, Hans-Werner; Spur, Günter: Handbuch Wärmebehandeln und Beschichten, Hanser 2015					
	b)	Versuchsbeschreibungen zum Praktikum					

Fu	Funktionswerkstoffe													
Kennnummer		Workload 180 Std.	Credits/LP		Studiensemester 1		nester	Nu	Häufigkei des Angeber FSommersei	ots	Dauer 1 Semester			
1	Lehrveranstaltungen			Sprac	he	Konta	ktzeit	Selb	ststudium	Geplai	nte Gruppengröße			
	a) Aufbau von Funktionswerkstoffen			a) Deutsch		a) 22,5 Std.		a) 67,5 Std.		a) 15				
	b) Vertiefungsseminar Funktionswerkstoffe			b) Deuts	sch	b) 22	,5 Std.	b)	67,5 Std.	b) 15				

2 Lernergebnisse/Kompetenzen

Nachdem Studierende das Modul besucht haben können sie...

Anwendung (3)

... das gelernte Wissen in die praxisbezogenen Themenfelder transferieren.

Analyse (4)

... verschiedene Aufgabenschwerpunkte analysieren und strukturierte Lösungswege ermitteln.

Synthese (5)

- ... Anforderungsprofile für eine technische Realisierung strukturieren.
- ... eigene Lösungsvorschläge erarbeiten und Umsetzungsmethoden entwickeln.

Evaluation / Bewertung (6)

- ... Herstell- und Bearbeitungsverfahren entsprechend der Produktionsanforderungen überarbeiten.
- ... und den Umsetzungsstand und die Zielerreichung bewerten.

3 Inhalte

- a) Ideale und reale Festkörper
 - Beugung: Beugungstheorie, Brillouin-Zonen, Methoden zur Strukturanalyse
 - Thermische Eigenschaften: Zustandsdichte, spezifische Wärme, Wärmeleitung
 - Elektronische Bänder, Fermi-Gas, quasifreie und gebundene Elektronen, Bandstrukturen
 - Ladungstransport: effektive Masse, Eigen- und Störstellenleitung
 - Dielektrische Eigenschaften: Strahlungsabsorption, Eigenschwingungen, Ferroelektrika, Exzitonen
 - Halbleiter: einkristallin/polykristallin/amorph, Dotierung, Diffusion, pn-Übergang ohne und mit Beleuchtung, Metall-Halbleiterkontakt
 - Magnetische Suszeptibilität: magnetische Permeabilität, Koerzitivkraft, Remanenz
 - Optische Eigenschaften: Reflexionsvermögen, Lichtabsorption, Emissionsvermögen, oxidische und nicht-oxidische Gläser, Grundlagen der Glasbildung
- b) Den Studierenden wird vom Seminarleiter ein materialwissenschaftliches Thema und dessen technische Anwendung zur Ausarbeitung in einem Seminarvortrag ausgegeben.

4	Lobr	formen
4		
	,	/orlesung / Übung
	b) S	Seminar
5	Teiln	ahmevoraussetzungen
	Mate	rialwissenschaftliche Kenntnisse, wie sie in einem Ingenieur-Bachelorstudiengang vermittelt werden
6	Prüfu	ungsformen
	a) N	Nodulprüfung 1K (Klausur) (3 LP)
	b) N	Modulprüfung 1sbH (Hausarbeit) (3 LP)
7	Verw	rendung des Moduls
	Ange	wandte Materialwissenschaften M.Sc. (AMW)
8	Modu	ulbeauftragte/r und hauptamtlich Lehrende
	Prof.	Dr. Griselda-Maria Guidoni (Modulverantwortliche/r)
9	Liter	atur
	a)	Vorlesungsskript
		Bäcker, M.: Funktionswerkstoffe: Physikalische Grundlagen und Prinzipien, 1. Aufl., Springer, 2014
		Leclerc, M.; Gauvin, B.: Functional Materials, 1. Aufl., De Gruyter, 2014
		Banerjee, S.; Tyagi, A.: Functional Materials: Preparation, Processing and Applications, 1. Aufl., Elsevier, 2011
		Kittel, Charles; Hunklinger, Siegfried: Einführung in die Festkörperphysik, 14., überarb. und erw. Aufl. / [die 14. dt. Ausg. wurde neu bearb. und aktualisiert von Siegfried Hunklinger], Oldenbourg 2006

Kennnummer		Workload 180 Std.	Credits/LP		Studiensemester 1		Häufigkeit des Angebots Nur Sommersemester		Dauer 1 Semester				
1	Lehr	rveranstaltungen		Sprac	he	Kontaktzeit	Selbststudium	Geplan	te Gruppengröß				
	a) Vertiefte W Materialan	/erkstoffprüfung & alytik		a) Deuts	sch	a) 45 Std.	a) 135 Std.	a) 15					
<u>)</u>		Lernergebnisse/Kompetenzen Nachdem Studierende das Modul besucht haben können sie											
	Wissen (1) die erhaltenen Messergebnisse in fundierter Form präsentieren.												
	Verständnis (2) die Zusammenhänge der Materialeigenschaften praxisbezogen erläutern.												
	Anwendung (3) die praktischen Erkenntnisse problembezogen anwenden.												
	Analyse (4) verschiedene Fragestellungen analysieren und geeignete Lösungen ermitteln												
	Synthese (5) Versuchsprogramme planen.												
	Evaluation / Bewertung (6) Analysenergebnisse bewerten.												
3	- Dünr - Sinte	törungsfreie Werksto nschicht-Grenzfläche erversuche (Dilatome ytische Charakterisie	nanalytik trie)		ton Dood	ddor							

Werkstoffanalytik-Kenntnisse, wie sie in einem Ingenieur-Bachelorstudiengang vermittelt werden.

a) Praktikum/Labor

Teilnahmevoraussetzungen

5

6	Prüf	ungsformen
	a) N	Modulprüfung 1sbL (Laborarbeit) (6 LP)
7	Verw	endung des Moduls
	Ange	wandte Materialwissenschaften M.Sc. (AMW)
8	Mod	ulbeauftragte/r und hauptamtlich Lehrende
	Prof.	Dr. Hadi Mozaffari-Jovein (Modulverantwortliche/r)
9	Liter	atur
	a)	Versuchsbeschreibungen zum Praktikum
		Shackelford, J.: Werkstofftechnologie für Ingenieure. Grundlagen - Prozesse - Anwendungen, 6. Aufl., Pearson, 2005
		Deutsch, Volker; Platte, Michael; Vogt, Manfred: Ultraschallprüfung : Grundlagen und industrielle Anwendungen, Springer 1997
		Stegemann, D.: Zerstörungsfreie Prüfverfahren – Radiografie und Radioskopie, 1. Aufl., Teubner-Verlag, 1995

Angewandte Naturwissenschaften & Simulation Kennnummer Workload Credits/LP Häufigkeit Studiensemester Dauer des Angebots 6 1 Semester 180 Std. 1 Nur Sommersemester 1 Sprache Kontaktzeit Selbststudium Geplante Gruppengröße Lehrveranstaltungen a) 22,5 Std. a) 67,5 Std. a) Ausgewählte Kapitel der a) Deutsch a) 15 Naturwissenschaften b) Deutsch b) 22,5 Std. b) 67,5 Std. b) 15

2 Lernergebnisse/Kompetenzen

Nachdem Studierende das Modul besucht haben können sie...

Wissen (1)

b) Simulation

... die Grundlagen der möglichen Wechselwirkungen zwischen Werkstoffen und biologischen Systemen präsentieren.

Verständnis (2)

... die Zusammenhänge zwischen naturwissenschaftlichen und ingenieurwissenschaftlichen Grundlagen erklären.

Anwendung (3)

... das gelernte Wissen in die praxisbezogenen Themenfelder transferieren.

Analyse (4

... die Zusammensetzung verschiedener Aufgabenschwerpunkte analysieren und strukturierte Lösungswege ermitteln.

Synthese (5)

... eigene Lösungsvorschläge erarbeiten und Umsetzungsmethoden entwickeln.

Evaluation / Bewertung (6)

... und den Umsetzungsstand und die Zielerreichung bewerten.

3 Inhalte

- a) Vertiefung spektroskopische Analysenmethoden
 - Diffusion in Festkörpern
 - Grundlegende Transportprozesse (Transportkoeffizienten, Geschwindigkeitskonstanten in Gasen, Flüssigkeiten und Festkörpern)
 - Keimbildungs- und Wachstumskinetik von Ausscheidungen
 - Klassifizierungen
 - Wachstumsprozesse
 - Ostwaldreifung
 - Spinodale Entmischung
 - Ausscheidungen und Domainwachstum
 - Wechselwirkung menschlicher Körper-Werkstoff
 - Biomaterialien und Biomineralisation
 - Biologische Aktivitäten von Werkstoffen (Toxisch, Korrodierend, Bioinert, Biokompatibel & Biotolerant, Bioaktiv)

- Biokompatibilitätstests
- Aufbereitung von Medizinprodukten (Reinigung, Desinfektion, Sterilisation)
- Technische Sauberkeit
- b) Grundlagen für die Simulation der Struktur- und Strömungsmechanik, Rheologie
 - Anwendung von Simulationsmethoden wie FEM, CFD
 - Wechselwirkung Strömungs-/Struktursimulation
 - Simulation von Phasendiagrammen (CALPHAD)
 - Mikrodynamische Simulation

4 Lehrformen

- a) Vorlesung
- b) Vorlesung / Praktikum

5 Teilnahmevoraussetzungen

Naturwissenschaftliche und Mathematik-Kenntnisse, wie sie in einem Ingenieur-Bachelorstudiengang vermittelt werden

6 Prüfungsformen

- a) Modulprüfung 1K (Klausur) (3 LP)
- b) Modulprüfung 1sbH (Hausarbeit) (3 LP)

7 Verwendung des Moduls

Angewandte Materialwissenschaften M.Sc. (AMW)

8 Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Michael D'Agosto (Modulverantwortliche/r)

Prof. Dr. Ulrich Gloistein (Modulverantwortliche/r)

Tiago Soares (Dozent/in)

9 Literatur

a) Vorlesungsskript

Vickerman, John; Gilmore, Ian: Surface Analysis: The Principal Techniques, 2. Aufl., Wiley - VCH 2009

Gottstein, Günter: Materialwissenschaft und Werkstofftechnik : physikalische Grundlagen, 4., neu bearb. Aufl., Springer Vieweg 2014

Wintermantel, Erich; Ha, Suk-Woo: Medizintechnik: Life Science Engineering; Interdisziplinarität, Biokompatibilität, Technologien, Implantate, Diagnostik, Werkstoffe, Zertifizierung, Business, 5., überarb. und erw. Aufl., Springer 2009

Schmidt, Rainer: Werkstoffverhalten in biologischen Systemen: Grundlagen - Anwendungen - Schädigungsmechanismen - Werkstoffprüfung, VDI-Verl. 1994

Epple, Matthias: Biomaterialien und Biomineralisation, Vieweg+Teubner-Verlag 2003

b) Vorlesungsskript

Klein, Bernd: FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau, 10., verb. Aufl. 2015, Springer Vieweg 2015 (E-Book)

Managementkompetenzen Credits/LP Workload Studiensemester Häufigkeit Dauer Kennnummer des Angebots 1 Semester 90 Std. 3 1 Nur Sommersemester 1 Sprache Kontaktzeit Selbststudium Geplante Gruppengröße Lehrveranstaltungen a) 22,5 Std. a) 67,5 Std. a) Management-Kompetenzen a) Deutsch a) 15

2 Lernergebnisse/Kompetenzen

Nachdem Studierende das Modul besucht haben können sie...

Anwendung (3)

... ihr betriebswirtschaftliches Grundlagenwissen über Managementfunktionen, -techniken und -methoden auf den Bereich der Materialwissenschaften beziehen und anwenden.

Analyse (4)

... Zielerreichungsgrade beurteilen.

Synthese (5)

- ... Unternehmensziele und –abläufe in Projekte und Unternehmenseinheiten übertragen.
- ... eine Unternehmenseinheit (Abteilung, Projektteam) managen.
- ... Personaleinsatz planen.

Evaluation / Bewertung (6)

... Entscheidungen auf der Basis von Analyseergebnissen bewerten.

3 Inhalte

- a) Einführung Management
 - Unternehmensprozesse
 - Compliance
 - Elementare Managementfunktionen
 - Planung
 - Organisation
 - Personaleinsatz
 - Führung
 - Kontrolle
 - Spezielle Managementfunktionen
 - Projektmanagement
 - Optimieren von Unternehmensprozessen
 - Kreativität
 - Qualitätsmanagement
 - Managementtechniken und Methoden
 - Kennzahlensysteme
 - Analysen
 - Prognosen
 - Besprechungen

Berichtswesen Entscheiden IT-Systeme Budgetierung Lean Management Selbstmanagement Planspiele - Optimierungsübungen 4 Lehrformen a) Vorlesung 5 Teilnahmevoraussetzungen Grundkenntnisse im Bereich BWL 6 Prüfungsformen a) Modulprüfung 1K (Klausur) (3 LP) 7 Verwendung des Moduls Angewandte Materialwissenschaften M.Sc. (AMW) 8 Modulbeauftragte/r und hauptamtlich Lehrende Prof. Dr. Kurt Greinwald (Modulverantwortliche/r) 9 Literatur a) Schwab, Adolf J.: Managementwissen für Ingenieure: Führung, Organisation, Existenzgründung, 4., neu bearb. Aufl., Springer 2008 Malik, Fredmund: Führen, Leisten, Leben: wirksames Management für eine neue Welt, Vollst. überarb. und erw. Fassung, Campus 2014 Malik, Fredmund F. (2013): Management, 2. Aufl., Frankfurt, M; New York, NY: Campus-Verlag Drucker, Peter F.; Collins, Jim: Die fünf entscheidenden Fragen des Managements, 1. Aufl., Wiley-VCH-Verl. 2009 Mintzberg, Henry: Managen, GABAL 2010 Drucker, Peter F.; Maciariello, Joseph A. (2009): Management. [das Standardwerk komplett überarbeitet und erweitert], Frankfurt am Main [u.a.]: Campus-Verlag

Schulte-Zurhausen, Manfred: Organisation, 6., überarb. und aktualisierte Aufl., Vahlen 2014

2. Semester

Forschungspraktikum/Projektarbeit Credits/LP Kennnummer Workload Studiensemester Häufigkeit Dauer des Angebots 1 Semester 180 Std. 6 2 Jedes Semester 1 Lehrveranstaltungen Sprache Kontaktzeit Selbststudium Geplante Gruppengröße a) Deutsch a) 2,25 Std. a) 177,75 Std. a) Forschungspraktikum / Projektarbeit a) 1

2 Lernergebnisse/Kompetenzen

Nach erfolgreicher Teilnahme am Modul können die Studierenden ...

Wissen (1)

... die Themenstellung und die Anforderungen beschreiben.

Verständnis (2)

... ihr theoretisches Wissen aus dem Studium differenziert darstellen und identifizieren, wo/wie sie dieses Wissen auf den praktischen Arbeitskontext übertragen können.

Anwendung (3)

... die gelernten Grundlagen auf die Problemstellung transferieren.

Analyse (4)

- ... Lösungen für die Projektaufgabe ermitteln.
- ... einen ausführlichen Bericht über die Tätigkeit erstellen und diesen präsentieren.

Synthese (5)

... die gewählte Lösungsmethode realisieren.

Evaluation / Bewertung (6)

... und diese anschließend bewerten.

3 Inhalte

a) Die Inhalte des Forschungspraktikums/der Projektarbeit sind abhängig vom jeweiligen Forschungsprojekt und werden mit dem entsprechenden Projektbetreuer abgesprochen.

4 Lehrformen

a) Projekt

5 Teilnahmevoraussetzungen

keine

6 Prüfungsformen

a) Modulprüfung 1A (Praktische Arbeit) (6 LP)

7	Verwendung des Moduls									
	Angewandte Materialwissenschaften M.Sc. (AMW)									
8	Modulbeauftragte/r und hauptamtlich Lehrende									
	Prof. Dr. Ulrich Gloistein (Modulverantwortliche/r)									
	Prof. Dr. Griselda-Maria Guidoni (Modulverantwortliche/r)									
	Prof. Dr. Hadi Mozaffari-Jovein (Modulverantwortliche/r)									
9	Literatur									
	a) vom Thema des Projektes abhängig									

3. Semester

Th	Thesis														
Kennnummer		Workload 900 Std.		Credits/LP 30		diensemester 3	Häufigke des Angeb Jedes Seme	Dauer 1 Semester							
1	Lehrveranstaltungen		Sprac	he	Kontaktzeit	Selbststudium	Gepla	nte Gruppengröße							
	a) Masterarbeit			a) Deutsch		a) 0 Std.	a) 810 Std. a) 1								
	b) Thesis Semiar		b) Deuts	sch	b) 0 Std.	b) 90 Std. b) 1									

2 Lernergebnisse/Kompetenzen

Nach erfolgreicher Teilnahme am Modul können die Studierenden ...

Wissen (1)

... ihr fachliches Grundlagenwissen im Rahmen eines selbst gewählten Masterarbeitsthemas aus dem ingenieurwissenschaftlichen Kontext darstellen.

Verständnis (2)

... eine geeignete wissenschaftliche Methodik auswählen und ihre Wahl wissenschaftlich begründen.

Anwendung (3)

... für eine Aufgabenstellung aus dem Bereich der Ingenieurwissenschaften eine einsatzfähige Lösung für die Praxis entwickeln.

Analyse (4)

... im Rahmen eines abgegrenzten Themas selbstständig die relevante Forschungsliteratur kritisch bewerten und den Einsatz der Forschungsmethoden sowie die daraus gewonnenen Ergebnisse analysieren.

Synthese (5)

... wesentliche Einflussfaktoren auf eine konkrete Problemstellung darstellen.

Evaluation / Bewertung (6)

... die eigenen wissenschaftlichen Ergebnisse kritisch beurteilen und mit dem aktuellen Forschungsstand vergleichen.

3 Inhalte

a) Themenabhängig

4 Lehrformen

- a)
- b) Seminar

5 Teilnahmevoraussetzungen

mindestens 42 Credits/LP

6	Prüfungsformen
	a) Modulprüfung 1T (Thesis) (27 LP)
	b) Modulprüfung 1PN (Präsentation) (3 LP)
7	Verwendung des Moduls
	Angewandte Materialwissenschaften M.Sc. (AMW)
8	Modulbeauftragte/r und hauptamtlich Lehrende
	Prof. Dr. Ulrich Gloistein (Modulverantwortliche/r)
	Prof. Dr. Griselda-Maria Guidoni (Modulverantwortliche/r)
	Prof. Dr. Hadi Mozaffari-Jovein (Modulverantwortliche/r)
9	Literatur
	a) vom Thema der Thesis abhängig