Kennnummer		Workload Cre 180 Std.			Studiensemester 1		Häufigkei des Angebo Nur Sommerser			Dauer 1 Semester	
	Leh	Lehrveranstaltungen			he Kon		ontaktzeit	Selbststudium		Geplante Gruppengröße	
	a) Fahrerassistenz und automatisiertes Fahren		a) Deuts		'	22,5 Std. 22,5 Std.	a) b)	67,5 Std. 67,5 Std.	a) 15 b) 15		

2 Lernergebnisse/Kompetenzen

Nach dem Studierende das Modul besucht haben, können sie...

Wissen (1)

- ... aktuelle Fahrerassistenz-, Unfallvermeidungssysteme (FAS) und automatisierte Fahrfunktionen (AF) benennen.
- ... Grundlagen der Verkehrspsychologie beschreiben.

Verständnis (2)

- ... die Funktionen der FAS in Zusammenhang mit den eingesetzten Technologien illustrieren.
- ... die Rolle des Menschen als Fahrer:in mit und ohne FAS/AF umschreiben.

Anwendung (3)

- ... anhand verkehrspsychologischer Grundlagen, Herausforderungen an die Fahrer:innen bei der Interaktion mit FAS vorhersagen.
- ... Beispiele für Fahrsituationen und zugehörige Fahrassistenz bzw. AF geben.
- ... Recherchen, Fallstudien, Diskussionen, Brainstormings.

Analyse (4)

- ... Grenzen & Herausforderungen der Systeme darstellen.
- ... eine die Rolle & Verantwortung des Fahrers analysieren.

Synthese (5)

... Herausforderungen & potentielle Konflikte bei der Interaktion von Fahrer:in und FAS/AS darstellen und auf konkrete Fahrsituationen beziehen.

Evaluation / Bewertung (6)

... FAS und AF aus technischen und psychologischen Kriterien beurteilen.

3 Inhalte

a) - Fahrerassistenzsysteme, Unfallvermeidung, Autonomes Fahren

- Gesetzgebung & Verbraucherschutz
- Betriebssicherheit, Systemgrenzen, Herausforderungen
- b) Fahraufgabe
 - Fahrermodelle
 - Fahrerzustand
 - Mensch-Maschine-Interaktion für FAS und AF

4 Lehrformen

- a) Vorlesung
- b) Vorlesung / Seminar

5 Teilnahmevoraussetzungen

- a) Grundlagen Physik & Technische Mechanik (Kinematik)
- b) Grundkenntnisse Psychologie

6 Prüfungsformen

- a) Prüfungsleistung 1sbK (Klausur) (3 LP)
- b) Prüfungsleistung 1sbR (Referat) (3 LP)

7 Verwendung des Moduls

Human Factors M.Sc. (HF)

8 Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Gerald Schmidt (Modulverantwortliche/r)

Dr. rer. nat. Lothar Grösch (Dozent/in)

9 Literatur

a) Maurer, M., Christian Gerdes, J., Lenz, B., & Winner, H. (2015). Autonomes Fahren: technische, rechtliche und gesellschaftliche Aspekte. Springer Nature.

SAE International (2018). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles J3016 201806. United States.

Winner, H., Hakuli, S., Lotz, F. & Singer, Ch. (2015). Handbuch Fahrerassistenzsysteme (3. Auflage). Springer Vieweg, Wiesbaden.

Aktuelle wissenschaftliche Artikel werden in der Veranstaltung bekannt gegeben

b) Vollrath, M., & Krems, J. F. (2011). Verkehrspsychologie: Ein Lehrbuch für Psychologen, Ingenieure und Informatiker. Kohlhammer Verlag.

Aktuelle wissenschaftliche Artikel werden in der Veranstaltung bekannt gegeben