Biomedizinische Grundlagen_seit WiSe 22/23									
Kennnummer		Workload 180 Std.	Credits/LP		Studiensemester 5		Häufigkeit des Angebots Nur Wintersemester		Dauer 1 Semester
1	Lehrveranstaltungen			Sprache		Kontaktzeit	Selbststudium Geplante Gruppenç		nte Gruppengröße
	a) Biomechanik			a) Deutsch		a) 33,75 Std.	a) 56,25 Std.	a) 40	
	b) Biomedizinische Werkstoffe			b) Deutsch		b) 33,75 Std.	b) 56,25 Std.	b) 40	

2 Lernergebnisse/Kompetenzen

Nach dem Besuch der Lehrveranstaltungen können die Studierenden...

Wissen (1)

- ... die Grundlagen der biomedizinischen Werkstoffe beherrschen.
- ... die Grundlagen der Biomechanik benennen.

Verständnis (2)

- ... die Biokompatibilität von Materialien beurteilen.
- ... die biomechanischen Hintergründe von Endoprothesen beispielhaft darstellen.

Anwendung (3)

- ... verschiedene Einsatzmöglichkeiten von medizinischen Werkstoffen veranschaulichen.
- ... Grundbegriffe der Biomechanik auf Fragestellungen mit medizintechnischer Relevanz anwenden.

Analyse (4)

- ... biomedizinische Werkstoffe klassifizieren und vergleichen.
- ... Anpassungen und Veränderungen im menschlichen Körper mechanischen Einwirkungen gegenüberstellen.

Synthese (5)

... die Herstellverfahren für derartige Werkstoffe erläutern.

Evaluation / Bewertung (6)

... den Nutzen verschiedener biomechanischer Methoden kritisch einschätzen.

3 Inhalte

- a) Verletzungen (Knochen und Weichgewebe)
 - Ergonomie und Anthropometrie
 - Geometrieinformationen aus medizinischen Schnittbildern
 - Experimente auf Gewebe-/Organebene
 - Bewegungsmessung, Elektromyographie

- Modellbildung Mehrkörpersysteme und inverse Dynamik
- Modellbildung FEM
- Knochengewebe
- Weichgewebe
- Fluidmechanik/Blutkreislauf
- Hüftgelenksendoprothetik
- Kniegelenksendoprothetik
- Wirbelsäule
- Schulter und Sprunggelenk
- Biotribologie orthopädischer Implantate
- Osteosynthese
- b) Einführung in Medizintechnik und biomedizinische Werkstoffe
 - Überblick über biologische Grundlagen
 - Biokompatibilität und Biofunktionalität
 - Implantat-Gewebe-Interaktionen
 - Bestimmung der Biokompatibilität (in vitro-, in vivo-Tests)
 - Metallische Werkstoffe in der Medizintechnik
 - Polymerwerkstoffe in der Medizintechnik
 - Keramische Werkstoffe in der Medizintechnik
 - Oberflächentechnik und Beschichtung von Biomaterialien
 - Medizinische Textilien und Sticktechnologie

4 Lehrformen

- a) Vorlesung
- b) Vorlesung

5 Teilnahmevoraussetzungen

Werkstofftechnik 1 und 2

6 Prüfungsformen

- a) Prüfungsleistung 1sbK (Klausur) (3 LP)
- b) Prüfungsleistung 1K (Klausur) (3 LP)

7 Verwendung des Moduls

Medizintechnik — Technologien und Entwicklungsprozesse B.Sc. (MTE)

8 Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Hadi Mozaffari-Jovein (Modulverantwortliche/r)

Thomas Grupp (Dozent/in)

9 Literatur

a) Faller, Adolf; Schünke, Michael ; Schünke, Gabriele: Der Körper des Menschen : Einführung in Bau und Funktion, 17., überarbeitete Auflage, 2016 (E-Book)

Huch, Renate 1938-; Engelhardt, Stephanie: Mensch, Körper, Krankheit: Anatomie, Physiologie, Krankheitsbilder; Lehrbuch und Atlas für die Berufe im Gesundheitswesen, 6. Aufl., Elsevier, Urban & Fischer 2011

Nigg, Benno M.: Biomechanics of the musculo-skeletal system, 2. ed., repr., Wiley 2002

Whiting, William C.; Zernicke, Ronald F.: Biomechanics of musculoskeletal injury, 2. ed., Human Kinetics 2008

b) Bebildertes Manuskript

Wintermantel, Erich 1956-; Ha, Suk-Woo: Medizintechnik: Life Science Engineering; Interdisziplinarität, Biokompatibilität, Technologien, Implantate, Diagnostik, Werkstoffe, Zertifizierung, Business, 5., überarb. und erw. Aufl., Springer 2009

Planck, Heinrich 1947-; Werkstoffwoche: Werkstoffe für die Medizintechnik: Symposium 4, 1. Aufl., Wiley-VCH 1999

Peters, Manfred: Titan und Titanlegierungen, [3., völlig neu bearb. Aufl.], 3. Nachdr., Wiley-VCH 2010

Lipscomb, I.P.: The Application of Shape Memory Alloys in Medicine, Professional Engineering Publishing

Biehl, V.; Brem, J.: Metallic Biomaterials, in: Materialwissenschaft und Werkstofftechnik Volume 32, Weinheim: Wiley-VCH, 2001

Helsen J.A.; Missirls, Y.: Biomaterials, Berlin: Springer, 2010