Ausgewählte Be Kennnummer		Workload 180 Std.	ntechnik_seit WiS Credits/LP 6		e 22/23 Studiensemester 5			Häufigkeit des Angebots Nur Wintersemester		Dauer 1 Semester		
1	Lehrveranstaltungen			Sprache		Kontaktzeit		Selbststudium		Gep	Geplante Gruppengröße	
	a) Biomechanik			a) Deutsch		a)	33,75 Std.	a)	56,25 Std.	a) 4	40	
	b) Ausgewäl Geräteted	b) Deutsch		b) 33,75 Std.		b)	56,25 Std.	b) 4	40			

2 Lernergebnisse/Kompetenzen

Nach dem Besuch der Lehrveranstaltungen können die Studierenden...

Wissen (1)

... die Grundlagen der Biomechanik benennen.

Verständnis (2)

- ... die biomechanischen Hintergründe von Endoprothesen beispielhaft darstellen.
- ... die Schritte zur Entwicklung eines Medizinproduktes verstehen.
- ... den Aufbau und die Wirkungsweise verschiedener medizinischer Geräte und Instrumente erklären.
- ... verschiedene Einsatzgebiete medizinischer Gerätetechniken beschreiben.

Anwendung (3)

- ... Grundbegriffe der Biomechanik auf Fragestellungen mit medizintechnischer Relevanz anwenden.
- ... den Einsatz von medizinischen Geräten und minimalinvasiver Verfahren in der Diagnostik und Therapie erfahren.

Analyse (4)

- ... Anpassungen und Veränderungen im menschlichen Körper mechanischen Einwirkungen gegenüberstellen.
- ... medizinische Geräte und Instrumente auf Praxisbeispiele beziehen.

Evaluation / Bewertung (6)

... den Nutzen verschiedener biomechanischer Methoden kritisch einschätzen.

3 Inhalte

- a) Verletzungen (Knochen und Weichgewebe)
 - Ergonomie und Anthropometrie
 - Geometrieinformationen aus medizinischen Schnittbildern
 - Experimente auf Gewebe-/Organebene
 - Bewegungsmessung, Elektromyographie
 - Modellbildung Mehrkörpersysteme und inverse Dynamik

- Modellbildung FEM
- Knochengewebe
- Weichgewebe
- Fluidmechanik/Blutkreislauf
- Hüftgelenksendoprothetik
- Kniegelenksendoprothetik
- Wirbelsäule
- Schulter und Sprunggelenk
- Biotribologie orthopädischer Implantate
- Osteosynthese
- b) Vorstellung ausgewählter medizintechnischer Geräte unter Berücksichtigung zentraler Entwicklungsschritte und Anwendungsaspekte wie z.B.
 - Anforderungen an die Medizinprodukte
 - Zentrale Designentscheidungen
 - Entwicklungsprozess im Unternehmen
 - Zulassung von Medizinprodukten
 - Anwendungsbereiche
 - Benutzungskontext und Gebrauchstauglichkeit
 - Klinische Wirkung der Medizinprodukte
 - Geschäftsmodelle
 - Patentsituation und Patentstrategie

4 Lehrformen

- a) Vorlesung
- b) Vorlesung

5 Teilnahmevoraussetzungen

- Werkstofftechnik 1 und 2
- Medizintechnische Grundlagen

6 Prüfungsformen

- a) Prüfungsleistung 1sbK (Klausur) (3 LP)
- b) Prüfungsleistung 1K (Klausur) (3 LP)

7 Verwendung des Moduls

Medizintechnik — Technologien und Entwicklungsprozesse B.Sc. (MTE)

8 Modulbeauftragte/r und hauptamtlich Lehrende

Prof. Dr. Mike Fornefett (Modulverantwortliche/r)

Thomas Grupp (Dozent/in)

9 Literatur

a) Faller, Adolf; Schünke, Michael ; Schünke, Gabriele: Der Körper des Menschen : Einführung in Bau und Funktion, 17., überarbeitete Auflage, 2016 (E-Book)

Huch, Renate 1938-; Engelhardt, Stephanie: Mensch, Körper, Krankheit: Anatomie, Physiologie, Krankheitsbilder; Lehrbuch und Atlas für die Berufe im Gesundheitswesen, 6. Aufl., Elsevier, Urban & Fischer 2011

Nigg, Benno M.: Biomechanics of the musculo-skeletal system, 2. ed., repr., Wiley 2002

Whiting, William C.; Zernicke, Ronald F.: Biomechanics of musculoskeletal injury, 2. ed., Human Kinetics 2008

b) Skript zur Lehrveranstaltung

Wintermantel, Erich 1956-; Ha, Suk-Woo: Medizintechnik: Life Science Engineering; Interdisziplinarität, Biokompatibilität, Technologien, Implantate, Diagnostik, Werkstoffe, Zertifizierung, Business, 5., überarb. und erw. Aufl., Springer 2009

Kramme, Rüdiger 1954-: Medizintechnik : Verfahren - Systeme - Informationsverarbeitung, 5., vollständig überarbeitete und erweiterte Auflage, 2017